特急すぺーしあ

数学が好きです。記載内容に間違い等がありましたらTwitter、コメント欄のどちらでも構いませんのでご連絡いただければ幸いです。

[tex:1 + 1 = 2]

円分多項式で遊んだ

前書き

この記事は、以下の大変素晴らしい記事に影響を受けています。

integers.hatenablog.com

Sympyで105次までの円分多項式を求めてみた

 \Phi_{1}(x) = x - 1

 \Phi_{2}(x) = x + 1

 \Phi_{3}(x) = x^{2} + x + 1

 \Phi_{4}(x) = x^{2} + 1

 \Phi_{5}(x) = x^{4} + x^{3} + x^{2} + x + 1

 \Phi_{6}(x) = x^{2} - x + 1

 \Phi_{7}(x) = x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1

 \Phi_{8}(x) = x^{4} + 1

 \Phi_{9}(x) = x^{6} + x^{3} + 1

 \Phi_{10}(x) = x^{4} - x^{3} + x^{2} - x + 1

 \Phi_{11}(x) = x^{10} + x^{9} + x^{8} + x^{7} + x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1

 \Phi_{12}(x) = x^{4} - x^{2} + 1

 \Phi_{13}(x) = x^{12} + x^{11} + x^{10} + x^{9} + x^{8} + x^{7} + x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1

 \Phi_{14}(x) = x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1

 \Phi_{15}(x) = x^{8} - x^{7} + x^{5} - x^{4} + x^{3} - x + 1

 \Phi_{16}(x) = x^{8} + 1

 \Phi_{17}(x) = x^{16} + x^{15} + x^{14} + x^{13} + x^{12} + x^{11} + x^{10} + x^{9} + x^{8} + x^{7} + x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1

 \Phi_{18}(x) = x^{6} - x^{3} + 1

 \Phi_{19}(x) = x^{18} + x^{17} + x^{16} + x^{15} + x^{14} + x^{13} + x^{12} + x^{11} + x^{10} + x^{9} + x^{8} + x^{7} + x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1

 \Phi_{20}(x) = x^{8} - x^{6} + x^{4} - x^{2} + 1

 \Phi_{21}(x) = x^{12} - x^{11} + x^{9} - x^{8} + x^{6} - x^{4} + x^{3} - x + 1

 \Phi_{22}(x) = x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1

 \Phi_{23}(x) = x^{22} + x^{21} + x^{20} + x^{19} + x^{18} + x^{17} + x^{16} + x^{15} + x^{14} + x^{13} + x^{12} + x^{11} + x^{10} + x^{9} + x^{8} + x^{7} + x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1

 \Phi_{24}(x) = x^{8} - x^{4} + 1

 \Phi_{25}(x) = x^{20} + x^{15} + x^{10} + x^{5} + 1

 \Phi_{26}(x) = x^{12} - x^{11} + x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1

 \Phi_{27}(x) = x^{18} + x^{9} + 1

 \Phi_{28}(x) = x^{12} - x^{10} + x^{8} - x^{6} + x^{4} - x^{2} + 1

 \Phi_{29}(x) = x^{28} + x^{27} + x^{26} + x^{25} + x^{24} + x^{23} + x^{22} + x^{21} + x^{20} + x^{19} + x^{18} + x^{17} + x^{16} + x^{15} + x^{14} + x^{13} + x^{12} + x^{11} + x^{10} + x^{9} + x^{8} + x^{7} + x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1

 \Phi_{30}(x) = x^{8} + x^{7} - x^{5} - x^{4} - x^{3} + x + 1

 \Phi_{31}(x) = x^{30} + x^{29} + x^{28} + x^{27} + x^{26} + x^{25} + x^{24} + x^{23} + x^{22} + x^{21} + x^{20} + x^{19} + x^{18} + x^{17} + x^{16} + x^{15} + x^{14} + x^{13} + x^{12} + x^{11} + x^{10} + x^{9} + x^{8} + x^{7} + x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1

 \Phi_{32}(x) = x^{16} + 1

 \Phi_{33}(x) = x^{20} - x^{19} + x^{17} - x^{16} + x^{14} - x^{13} + x^{11} - x^{10} + x^{9} - x^{7} + x^{6} - x^{4} + x^{3} - x + 1

 \Phi_{34}(x) = x^{16} - x^{15} + x^{14} - x^{13} + x^{12} - x^{11} + x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1

 \Phi_{35}(x) = x^{24} - x^{23} + x^{19} - x^{18} + x^{17} - x^{16} + x^{14} - x^{13} + x^{12} - x^{11} + x^{10} - x^{8} + x^{7} - x^{6} + x^{5} - x + 1

 \Phi_{36}(x) = x^{12} - x^{6} + 1

 \Phi_{37}(x) = x^{36} + x^{35} + x^{34} + x^{33} + x^{32} + x^{31} + x^{30} + x^{29} + x^{28} + x^{27} + x^{26} + x^{25} + x^{24} + x^{23} + x^{22} + x^{21} + x^{20} + x^{19} + x^{18} + x^{17} + x^{16} + x^{15} + x^{14} + x^{13} + x^{12} + x^{11} + x^{10} + x^{9} + x^{8} + x^{7} + x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1

 \Phi_{38}(x) = x^{18} - x^{17} + x^{16} - x^{15} + x^{14} - x^{13} + x^{12} - x^{11} + x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1

 \Phi_{39}(x) = x^{24} - x^{23} + x^{21} - x^{20} + x^{18} - x^{17} + x^{15} - x^{14} + x^{12} - x^{10} + x^{9} - x^{7} + x^{6} - x^{4} + x^{3} - x + 1

 \Phi_{40}(x) = x^{16} - x^{12} + x^{8} - x^{4} + 1

 \Phi_{41}(x) = x^{40} + x^{39} + x^{38} + x^{37} + x^{36} + x^{35} + x^{34} + x^{33} + x^{32} + x^{31} + x^{30} + x^{29} + x^{28} + x^{27} + x^{26} + x^{25} + x^{24} + x^{23} + x^{22} + x^{21} + x^{20} + x^{19} + x^{18} + x^{17} + x^{16} + x^{15} + x^{14} + x^{13} + x^{12} + x^{11} + x^{10} + x^{9} + x^{8} + x^{7} + x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1

 \Phi_{42}(x) = x^{12} + x^{11} - x^{9} - x^{8} + x^{6} - x^{4} - x^{3} + x + 1

 \Phi_{43}(x) = x^{42} + x^{41} + x^{40} + x^{39} + x^{38} + x^{37} + x^{36} + x^{35} + x^{34} + x^{33} + x^{32} + x^{31} + x^{30} + x^{29} + x^{28} + x^{27} + x^{26} + x^{25} + x^{24} + x^{23} + x^{22} + x^{21} + x^{20} + x^{19} + x^{18} + x^{17} + x^{16} + x^{15} + x^{14} + x^{13} + x^{12} + x^{11} + x^{10} + x^{9} + x^{8} + x^{7} + x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1

 \Phi_{44}(x) = x^{20} - x^{18} + x^{16} - x^{14} + x^{12} - x^{10} + x^{8} - x^{6} + x^{4} - x^{2} + 1

 \Phi_{45}(x) = x^{24} - x^{21} + x^{15} - x^{12} + x^{9} - x^{3} + 1

 \Phi_{46}(x) = x^{22} - x^{21} + x^{20} - x^{19} + x^{18} - x^{17} + x^{16} - x^{15} + x^{14} - x^{13} + x^{12} - x^{11} + x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1

 \Phi_{47}(x) = x^{46} + x^{45} + x^{44} + x^{43} + x^{42} + x^{41} + x^{40} + x^{39} + x^{38} + x^{37} + x^{36} + x^{35} + x^{34} + x^{33} + x^{32} + x^{31} + x^{30} + x^{29} + x^{28} + x^{27} + x^{26} + x^{25} + x^{24} + x^{23} + x^{22} + x^{21} + x^{20} + x^{19} + x^{18} + x^{17} + x^{16} + x^{15} + x^{14} + x^{13} + x^{12} + x^{11} + x^{10} + x^{9} + x^{8} + x^{7} + x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1

 \Phi_{48}(x) = x^{16} - x^{8} + 1

 \Phi_{49}(x) = x^{42} + x^{35} + x^{28} + x^{21} + x^{14} + x^{7} + 1

 \Phi_{50}(x) = x^{20} - x^{15} + x^{10} - x^{5} + 1

 \Phi_{51}(x) = x^{32} - x^{31} + x^{29} - x^{28} + x^{26} - x^{25} + x^{23} - x^{22} + x^{20} - x^{19} + x^{17} - x^{16} + x^{15} - x^{13} + x^{12} - x^{10} + x^{9} - x^{7} + x^{6} - x^{4} + x^{3} - x + 1

 \Phi_{52}(x) = x^{24} - x^{22} + x^{20} - x^{18} + x^{16} - x^{14} + x^{12} - x^{10} + x^{8} - x^{6} + x^{4} - x^{2} + 1

 \Phi_{53}(x) = x^{52} + x^{51} + x^{50} + x^{49} + x^{48} + x^{47} + x^{46} + x^{45} + x^{44} + x^{43} + x^{42} + x^{41} + x^{40} + x^{39} + x^{38} + x^{37} + x^{36} + x^{35} + x^{34} + x^{33} + x^{32} + x^{31} + x^{30} + x^{29} + x^{28} + x^{27} + x^{26} + x^{25} + x^{24} + x^{23} + x^{22} + x^{21} + x^{20} + x^{19} + x^{18} + x^{17} + x^{16} + x^{15} + x^{14} + x^{13} + x^{12} + x^{11} + x^{10} + x^{9} + x^{8} + x^{7} + x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1

 \Phi_{54}(x) = x^{18} - x^{9} + 1

 \Phi_{55}(x) = x^{40} - x^{39} + x^{35} - x^{34} + x^{30} - x^{28} + x^{25} - x^{23} + x^{20} - x^{17} + x^{15} - x^{12} + x^{10} - x^{6} + x^{5} - x + 1

 \Phi_{56}(x) = x^{24} - x^{20} + x^{16} - x^{12} + x^{8} - x^{4} + 1

 \Phi_{57}(x) = x^{36} - x^{35} + x^{33} - x^{32} + x^{30} - x^{29} + x^{27} - x^{26} + x^{24} - x^{23} + x^{21} - x^{20} + x^{18} - x^{16} + x^{15} - x^{13} + x^{12} - x^{10} + x^{9} - x^{7} + x^{6} - x^{4} + x^{3} - x + 1

 \Phi_{58}(x) = x^{28} - x^{27} + x^{26} - x^{25} + x^{24} - x^{23} + x^{22} - x^{21} + x^{20} - x^{19} + x^{18} - x^{17} + x^{16} - x^{15} + x^{14} - x^{13} + x^{12} - x^{11} + x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1

 \Phi_{59}(x) = x^{58} + x^{57} + x^{56} + x^{55} + x^{54} + x^{53} + x^{52} + x^{51} + x^{50} + x^{49} + x^{48} + x^{47} + x^{46} + x^{45} + x^{44} + x^{43} + x^{42} + x^{41} + x^{40} + x^{39} + x^{38} + x^{37} + x^{36} + x^{35} + x^{34} + x^{33} + x^{32} + x^{31} + x^{30} + x^{29} + x^{28} + x^{27} + x^{26} + x^{25} + x^{24} + x^{23} + x^{22} + x^{21} + x^{20} + x^{19} + x^{18} + x^{17} + x^{16} + x^{15} + x^{14} + x^{13} + x^{12} + x^{11} + x^{10} + x^{9} + x^{8} + x^{7} + x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1

 \Phi_{60}(x) = x^{16} + x^{14} - x^{10} - x^{8} - x^{6} + x^{2} + 1

 \Phi_{61}(x) = x^{60} + x^{59} + x^{58} + x^{57} + x^{56} + x^{55} + x^{54} + x^{53} + x^{52} + x^{51} + x^{50} + x^{49} + x^{48} + x^{47} + x^{46} + x^{45} + x^{44} + x^{43} + x^{42} + x^{41} + x^{40} + x^{39} + x^{38} + x^{37} + x^{36} + x^{35} + x^{34} + x^{33} + x^{32} + x^{31} + x^{30} + x^{29} + x^{28} + x^{27} + x^{26} + x^{25} + x^{24} + x^{23} + x^{22} + x^{21} + x^{20} + x^{19} + x^{18} + x^{17} + x^{16} + x^{15} + x^{14} + x^{13} + x^{12} + x^{11} + x^{10} + x^{9} + x^{8} + x^{7} + x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1

 \Phi_{62}(x) = x^{30} - x^{29} + x^{28} - x^{27} + x^{26} - x^{25} + x^{24} - x^{23} + x^{22} - x^{21} + x^{20} - x^{19} + x^{18} - x^{17} + x^{16} - x^{15} + x^{14} - x^{13} + x^{12} - x^{11} + x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1

 \Phi_{63}(x) = x^{36} - x^{33} + x^{27} - x^{24} + x^{18} - x^{12} + x^{9} - x^{3} + 1

 \Phi_{64}(x) = x^{32} + 1

 \Phi_{65}(x) = x^{48} - x^{47} + x^{43} - x^{42} + x^{38} - x^{37} + x^{35} - x^{34} + x^{33} - x^{32} + x^{30} - x^{29} + x^{28} - x^{27} + x^{25} - x^{24} + x^{23} - x^{21} + x^{20} - x^{19} + x^{18} - x^{16} + x^{15} - x^{14} + x^{13} - x^{11} + x^{10} - x^{6} + x^{5} - x + 1

 \Phi_{66}(x) = x^{20} + x^{19} - x^{17} - x^{16} + x^{14} + x^{13} - x^{11} - x^{10} - x^{9} + x^{7} + x^{6} - x^{4} - x^{3} + x + 1

 \Phi_{67}(x) = x^{66} + x^{65} + x^{64} + x^{63} + x^{62} + x^{61} + x^{60} + x^{59} + x^{58} + x^{57} + x^{56} + x^{55} + x^{54} + x^{53} + x^{52} + x^{51} + x^{50} + x^{49} + x^{48} + x^{47} + x^{46} + x^{45} + x^{44} + x^{43} + x^{42} + x^{41} + x^{40} + x^{39} + x^{38} + x^{37} + x^{36} + x^{35} + x^{34} + x^{33} + x^{32} + x^{31} + x^{30} + x^{29} + x^{28} + x^{27} + x^{26} + x^{25} + x^{24} + x^{23} + x^{22} + x^{21} + x^{20} + x^{19} + x^{18} + x^{17} + x^{16} + x^{15} + x^{14} + x^{13} + x^{12} + x^{11} + x^{10} + x^{9} + x^{8} + x^{7} + x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1

 \Phi_{68}(x) = x^{32} - x^{30} + x^{28} - x^{26} + x^{24} - x^{22} + x^{20} - x^{18} + x^{16} - x^{14} + x^{12} - x^{10} + x^{8} - x^{6} + x^{4} - x^{2} + 1

 \Phi_{69}(x) = x^{44} - x^{43} + x^{41} - x^{40} + x^{38} - x^{37} + x^{35} - x^{34} + x^{32} - x^{31} + x^{29} - x^{28} + x^{26} - x^{25} + x^{23} - x^{22} + x^{21} - x^{19} + x^{18} - x^{16} + x^{15} - x^{13} + x^{12} - x^{10} + x^{9} - x^{7} + x^{6} - x^{4} + x^{3} - x + 1

 \Phi_{70}(x) = x^{24} + x^{23} - x^{19} - x^{18} - x^{17} - x^{16} + x^{14} + x^{13} + x^{12} + x^{11} + x^{10} - x^{8} - x^{7} - x^{6} - x^{5} + x + 1

 \Phi_{71}(x) = x^{70} + x^{69} + x^{68} + x^{67} + x^{66} + x^{65} + x^{64} + x^{63} + x^{62} + x^{61} + x^{60} + x^{59} + x^{58} + x^{57} + x^{56} + x^{55} + x^{54} + x^{53} + x^{52} + x^{51} + x^{50} + x^{49} + x^{48} + x^{47} + x^{46} + x^{45} + x^{44} + x^{43} + x^{42} + x^{41} + x^{40} + x^{39} + x^{38} + x^{37} + x^{36} + x^{35} + x^{34} + x^{33} + x^{32} + x^{31} + x^{30} + x^{29} + x^{28} + x^{27} + x^{26} + x^{25} + x^{24} + x^{23} + x^{22} + x^{21} + x^{20} + x^{19} + x^{18} + x^{17} + x^{16} + x^{15} + x^{14} + x^{13} + x^{12} + x^{11} + x^{10} + x^{9} + x^{8} + x^{7} + x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1

 \Phi_{72}(x) = x^{24} - x^{12} + 1

 \Phi_{73}(x) = x^{72} + x^{71} + x^{70} + x^{69} + x^{68} + x^{67} + x^{66} + x^{65} + x^{64} + x^{63} + x^{62} + x^{61} + x^{60} + x^{59} + x^{58} + x^{57} + x^{56} + x^{55} + x^{54} + x^{53} + x^{52} + x^{51} + x^{50} + x^{49} + x^{48} + x^{47} + x^{46} + x^{45} + x^{44} + x^{43} + x^{42} + x^{41} + x^{40} + x^{39} + x^{38} + x^{37} + x^{36} + x^{35} + x^{34} + x^{33} + x^{32} + x^{31} + x^{30} + x^{29} + x^{28} + x^{27} + x^{26} + x^{25} + x^{24} + x^{23} + x^{22} + x^{21} + x^{20} + x^{19} + x^{18} + x^{17} + x^{16} + x^{15} + x^{14} + x^{13} + x^{12} + x^{11} + x^{10} + x^{9} + x^{8} + x^{7} + x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1

 \Phi_{74}(x) = x^{36} - x^{35} + x^{34} - x^{33} + x^{32} - x^{31} + x^{30} - x^{29} + x^{28} - x^{27} + x^{26} - x^{25} + x^{24} - x^{23} + x^{22} - x^{21} + x^{20} - x^{19} + x^{18} - x^{17} + x^{16} - x^{15} + x^{14} - x^{13} + x^{12} - x^{11} + x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1

 \Phi_{75}(x) = x^{40} - x^{35} + x^{25} - x^{20} + x^{15} - x^{5} + 1

 \Phi_{76}(x) = x^{36} - x^{34} + x^{32} - x^{30} + x^{28} - x^{26} + x^{24} - x^{22} + x^{20} - x^{18} + x^{16} - x^{14} + x^{12} - x^{10} + x^{8} - x^{6} + x^{4} - x^{2} + 1

 \Phi_{77}(x) = x^{60} - x^{59} + x^{53} - x^{52} + x^{49} - x^{48} + x^{46} - x^{45} + x^{42} - x^{41} + x^{39} - x^{37} + x^{35} - x^{34} + x^{32} - x^{30} + x^{28} - x^{26} + x^{25} - x^{23} + x^{21} - x^{19} + x^{18} - x^{15} + x^{14} - x^{12} + x^{11} - x^{8} + x^{7} - x + 1

 \Phi_{78}(x) = x^{24} + x^{23} - x^{21} - x^{20} + x^{18} + x^{17} - x^{15} - x^{14} + x^{12} - x^{10} - x^{9} + x^{7} + x^{6} - x^{4} - x^{3} + x + 1

 \Phi_{79}(x) = x^{78} + x^{77} + x^{76} + x^{75} + x^{74} + x^{73} + x^{72} + x^{71} + x^{70} + x^{69} + x^{68} + x^{67} + x^{66} + x^{65} + x^{64} + x^{63} + x^{62} + x^{61} + x^{60} + x^{59} + x^{58} + x^{57} + x^{56} + x^{55} + x^{54} + x^{53} + x^{52} + x^{51} + x^{50} + x^{49} + x^{48} + x^{47} + x^{46} + x^{45} + x^{44} + x^{43} + x^{42} + x^{41} + x^{40} + x^{39} + x^{38} + x^{37} + x^{36} + x^{35} + x^{34} + x^{33} + x^{32} + x^{31} + x^{30} + x^{29} + x^{28} + x^{27} + x^{26} + x^{25} + x^{24} + x^{23} + x^{22} + x^{21} + x^{20} + x^{19} + x^{18} + x^{17} + x^{16} + x^{15} + x^{14} + x^{13} + x^{12} + x^{11} + x^{10} + x^{9} + x^{8} + x^{7} + x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1

 \Phi_{80}(x) = x^{32} - x^{24} + x^{16} - x^{8} + 1

 \Phi_{81}(x) = x^{54} + x^{27} + 1

 \Phi_{82}(x) = x^{40} - x^{39} + x^{38} - x^{37} + x^{36} - x^{35} + x^{34} - x^{33} + x^{32} - x^{31} + x^{30} - x^{29} + x^{28} - x^{27} + x^{26} - x^{25} + x^{24} - x^{23} + x^{22} - x^{21} + x^{20} - x^{19} + x^{18} - x^{17} + x^{16} - x^{15} + x^{14} - x^{13} + x^{12} - x^{11} + x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1

 \Phi_{83}(x) = x^{82} + x^{81} + x^{80} + x^{79} + x^{78} + x^{77} + x^{76} + x^{75} + x^{74} + x^{73} + x^{72} + x^{71} + x^{70} + x^{69} + x^{68} + x^{67} + x^{66} + x^{65} + x^{64} + x^{63} + x^{62} + x^{61} + x^{60} + x^{59} + x^{58} + x^{57} + x^{56} + x^{55} + x^{54} + x^{53} + x^{52} + x^{51} + x^{50} + x^{49} + x^{48} + x^{47} + x^{46} + x^{45} + x^{44} + x^{43} + x^{42} + x^{41} + x^{40} + x^{39} + x^{38} + x^{37} + x^{36} + x^{35} + x^{34} + x^{33} + x^{32} + x^{31} + x^{30} + x^{29} + x^{28} + x^{27} + x^{26} + x^{25} + x^{24} + x^{23} + x^{22} + x^{21} + x^{20} + x^{19} + x^{18} + x^{17} + x^{16} + x^{15} + x^{14} + x^{13} + x^{12} + x^{11} + x^{10} + x^{9} + x^{8} + x^{7} + x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1

 \Phi_{84}(x) = x^{24} + x^{22} - x^{18} - x^{16} + x^{12} - x^{8} - x^{6} + x^{2} + 1

 \Phi_{85}(x) = x^{64} - x^{63} + x^{59} - x^{58} + x^{54} - x^{53} + x^{49} - x^{48} + x^{47} - x^{46} + x^{44} - x^{43} + x^{42} - x^{41} + x^{39} - x^{38} + x^{37} - x^{36} + x^{34} - x^{33} + x^{32} - x^{31} + x^{30} - x^{28} + x^{27} - x^{26} + x^{25} - x^{23} + x^{22} - x^{21} + x^{20} - x^{18} + x^{17} - x^{16} + x^{15} - x^{11} + x^{10} - x^{6} + x^{5} - x + 1

 \Phi_{86}(x) = x^{42} - x^{41} + x^{40} - x^{39} + x^{38} - x^{37} + x^{36} - x^{35} + x^{34} - x^{33} + x^{32} - x^{31} + x^{30} - x^{29} + x^{28} - x^{27} + x^{26} - x^{25} + x^{24} - x^{23} + x^{22} - x^{21} + x^{20} - x^{19} + x^{18} - x^{17} + x^{16} - x^{15} + x^{14} - x^{13} + x^{12} - x^{11} + x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1

 \Phi_{87}(x) = x^{56} - x^{55} + x^{53} - x^{52} + x^{50} - x^{49} + x^{47} - x^{46} + x^{44} - x^{43} + x^{41} - x^{40} + x^{38} - x^{37} + x^{35} - x^{34} + x^{32} - x^{31} + x^{29} - x^{28} + x^{27} - x^{25} + x^{24} - x^{22} + x^{21} - x^{19} + x^{18} - x^{16} + x^{15} - x^{13} + x^{12} - x^{10} + x^{9} - x^{7} + x^{6} - x^{4} + x^{3} - x + 1

 \Phi_{88}(x) = x^{40} - x^{36} + x^{32} - x^{28} + x^{24} - x^{20} + x^{16} - x^{12} + x^{8} - x^{4} + 1

 \Phi_{89}(x) = x^{88} + x^{87} + x^{86} + x^{85} + x^{84} + x^{83} + x^{82} + x^{81} + x^{80} + x^{79} + x^{78} + x^{77} + x^{76} + x^{75} + x^{74} + x^{73} + x^{72} + x^{71} + x^{70} + x^{69} + x^{68} + x^{67} + x^{66} + x^{65} + x^{64} + x^{63} + x^{62} + x^{61} + x^{60} + x^{59} + x^{58} + x^{57} + x^{56} + x^{55} + x^{54} + x^{53} + x^{52} + x^{51} + x^{50} + x^{49} + x^{48} + x^{47} + x^{46} + x^{45} + x^{44} + x^{43} + x^{42} + x^{41} + x^{40} + x^{39} + x^{38} + x^{37} + x^{36} + x^{35} + x^{34} + x^{33} + x^{32} + x^{31} + x^{30} + x^{29} + x^{28} + x^{27} + x^{26} + x^{25} + x^{24} + x^{23} + x^{22} + x^{21} + x^{20} + x^{19} + x^{18} + x^{17} + x^{16} + x^{15} + x^{14} + x^{13} + x^{12} + x^{11} + x^{10} + x^{9} + x^{8} + x^{7} + x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1

 \Phi_{90}(x) = x^{24} + x^{21} - x^{15} - x^{12} - x^{9} + x^{3} + 1

 \Phi_{91}(x) = x^{72} - x^{71} + x^{65} - x^{64} + x^{59} - x^{57} + x^{52} - x^{50} + x^{46} - x^{43} + x^{39} - x^{36} + x^{33} - x^{29} + x^{26} - x^{22} + x^{20} - x^{15} + x^{13} - x^{8} + x^{7} - x + 1

 \Phi_{92}(x) = x^{44} - x^{42} + x^{40} - x^{38} + x^{36} - x^{34} + x^{32} - x^{30} + x^{28} - x^{26} + x^{24} - x^{22} + x^{20} - x^{18} + x^{16} - x^{14} + x^{12} - x^{10} + x^{8} - x^{6} + x^{4} - x^{2} + 1

 \Phi_{93}(x) = x^{60} - x^{59} + x^{57} - x^{56} + x^{54} - x^{53} + x^{51} - x^{50} + x^{48} - x^{47} + x^{45} - x^{44} + x^{42} - x^{41} + x^{39} - x^{38} + x^{36} - x^{35} + x^{33} - x^{32} + x^{30} - x^{28} + x^{27} - x^{25} + x^{24} - x^{22} + x^{21} - x^{19} + x^{18} - x^{16} + x^{15} - x^{13} + x^{12} - x^{10} + x^{9} - x^{7} + x^{6} - x^{4} + x^{3} - x + 1

 \Phi_{94}(x) = x^{46} - x^{45} + x^{44} - x^{43} + x^{42} - x^{41} + x^{40} - x^{39} + x^{38} - x^{37} + x^{36} - x^{35} + x^{34} - x^{33} + x^{32} - x^{31} + x^{30} - x^{29} + x^{28} - x^{27} + x^{26} - x^{25} + x^{24} - x^{23} + x^{22} - x^{21} + x^{20} - x^{19} + x^{18} - x^{17} + x^{16} - x^{15} + x^{14} - x^{13} + x^{12} - x^{11} + x^{10} - x^{9} + x^{8} - x^{7} + x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1

 \Phi_{95}(x) = x^{72} - x^{71} + x^{67} - x^{66} + x^{62} - x^{61} + x^{57} - x^{56} + x^{53} - x^{51} + x^{48} - x^{46} + x^{43} - x^{41} + x^{38} - x^{36} + x^{34} - x^{31} + x^{29} - x^{26} + x^{24} - x^{21} + x^{19} - x^{16} + x^{15} - x^{11} + x^{10} - x^{6} + x^{5} - x + 1

 \Phi_{96}(x) = x^{32} - x^{16} + 1

 \Phi_{97}(x) = x^{96} + x^{95} + x^{94} + x^{93} + x^{92} + x^{91} + x^{90} + x^{89} + x^{88} + x^{87} + x^{86} + x^{85} + x^{84} + x^{83} + x^{82} + x^{81} + x^{80} + x^{79} + x^{78} + x^{77} + x^{76} + x^{75} + x^{74} + x^{73} + x^{72} + x^{71} + x^{70} + x^{69} + x^{68} + x^{67} + x^{66} + x^{65} + x^{64} + x^{63} + x^{62} + x^{61} + x^{60} + x^{59} + x^{58} + x^{57} + x^{56} + x^{55} + x^{54} + x^{53} + x^{52} + x^{51} + x^{50} + x^{49} + x^{48} + x^{47} + x^{46} + x^{45} + x^{44} + x^{43} + x^{42} + x^{41} + x^{40} + x^{39} + x^{38} + x^{37} + x^{36} + x^{35} + x^{34} + x^{33} + x^{32} + x^{31} + x^{30} + x^{29} + x^{28} + x^{27} + x^{26} + x^{25} + x^{24} + x^{23} + x^{22} + x^{21} + x^{20} + x^{19} + x^{18} + x^{17} + x^{16} + x^{15} + x^{14} + x^{13} + x^{12} + x^{11} + x^{10} + x^{9} + x^{8} + x^{7} + x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1

 \Phi_{98}(x) = x^{42} - x^{35} + x^{28} - x^{21} + x^{14} - x^{7} + 1

 \Phi_{99}(x) = x^{60} - x^{57} + x^{51} - x^{48} + x^{42} - x^{39} + x^{33} - x^{30} + x^{27} - x^{21} + x^{18} - x^{12} + x^{9} - x^{3} + 1

 \Phi_{100}(x) = x^{40} - x^{30} + x^{20} - x^{10} + 1

 \Phi_{101}(x) = x^{100} + x^{99} + x^{98} + x^{97} + x^{96} + x^{95} + x^{94} + x^{93} + x^{92} + x^{91} + x^{90} + x^{89} + x^{88} + x^{87} + x^{86} + x^{85} + x^{84} + x^{83} + x^{82} + x^{81} + x^{80} + x^{79} + x^{78} + x^{77} + x^{76} + x^{75} + x^{74} + x^{73} + x^{72} + x^{71} + x^{70} + x^{69} + x^{68} + x^{67} + x^{66} + x^{65} + x^{64} + x^{63} + x^{62} + x^{61} + x^{60} + x^{59} + x^{58} + x^{57} + x^{56} + x^{55} + x^{54} + x^{53} + x^{52} + x^{51} + x^{50} + x^{49} + x^{48} + x^{47} + x^{46} + x^{45} + x^{44} + x^{43} + x^{42} + x^{41} + x^{40} + x^{39} + x^{38} + x^{37} + x^{36} + x^{35} + x^{34} + x^{33} + x^{32} + x^{31} + x^{30} + x^{29} + x^{28} + x^{27} + x^{26} + x^{25} + x^{24} + x^{23} + x^{22} + x^{21} + x^{20} + x^{19} + x^{18} + x^{17} + x^{16} + x^{15} + x^{14} + x^{13} + x^{12} + x^{11} + x^{10} + x^{9} + x^{8} + x^{7} + x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1

 \Phi_{102}(x) = x^{32} + x^{31} - x^{29} - x^{28} + x^{26} + x^{25} - x^{23} - x^{22} + x^{20} + x^{19} - x^{17} - x^{16} - x^{15} + x^{13} + x^{12} - x^{10} - x^{9} + x^{7} + x^{6} - x^{4} - x^{3} + x + 1

 \Phi_{103}(x) = x^{102} + x^{101} + x^{100} + x^{99} + x^{98} + x^{97} + x^{96} + x^{95} + x^{94} + x^{93} + x^{92} + x^{91} + x^{90} + x^{89} + x^{88} + x^{87} + x^{86} + x^{85} + x^{84} + x^{83} + x^{82} + x^{81} + x^{80} + x^{79} + x^{78} + x^{77} + x^{76} + x^{75} + x^{74} + x^{73} + x^{72} + x^{71} + x^{70} + x^{69} + x^{68} + x^{67} + x^{66} + x^{65} + x^{64} + x^{63} + x^{62} + x^{61} + x^{60} + x^{59} + x^{58} + x^{57} + x^{56} + x^{55} + x^{54} + x^{53} + x^{52} + x^{51} + x^{50} + x^{49} + x^{48} + x^{47} + x^{46} + x^{45} + x^{44} + x^{43} + x^{42} + x^{41} + x^{40} + x^{39} + x^{38} + x^{37} + x^{36} + x^{35} + x^{34} + x^{33} + x^{32} + x^{31} + x^{30} + x^{29} + x^{28} + x^{27} + x^{26} + x^{25} + x^{24} + x^{23} + x^{22} + x^{21} + x^{20} + x^{19} + x^{18} + x^{17} + x^{16} + x^{15} + x^{14} + x^{13} + x^{12} + x^{11} + x^{10} + x^{9} + x^{8} + x^{7} + x^{6} + x^{5} + x^{4} + x^{3} + x^{2} + x + 1

 \Phi_{104}(x) = x^{48} - x^{44} + x^{40} - x^{36} + x^{32} - x^{28} + x^{24} - x^{20} + x^{16} - x^{12} + x^{8} - x^{4} + 1

 \Phi_{105}(x) = x^{48} + x^{47} + x^{46} - x^{43} - x^{42} - 2x^{41} - x^{40} - x^{39} + x^{36} + x^{35} + x^{34} + x^{33} + x^{32} + x^{31} - x^{28} - x^{26} - x^{24} - x^{22} - x^{20} + x^{17} + x^{16} + x^{15} + x^{14} + x^{13} + x^{12} - x^{9} - x^{8} - 2x^{7} - x^{6} - x^{5} + x^{2} + x + 1

壮観ですね。